Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 209
Filter
1.
Chinese Journal of Preventive Medicine ; (12): 557-565, 2023.
Article in Chinese | WPRIM | ID: wpr-985444

ABSTRACT

Objective: To investigate the antimicrobial resistance of food-borne diarrheagenic Escherichia coli (DEC) and the prevalence of mcr genes that mediates mobile colistin resistance in parts of China, 2020. Methods: For 91 DEC isolates recovered from food sources collected from Fujian province, Hebei province, Inner Mongolia Autonomous Region and Shanghai city in 2020, Vitek2 Compact biochemical identification and antimicrobial susceptibility testing platform was used for the detection of antimicrobial susceptibility testing (AST) against to 18 kinds of antimicrobial compounds belonging to 9 categories, and multi-polymerase chain reaction (mPCR) was used to detect the mcr-1-mcr-9 genes, then a further AST, whole genome sequencing (WGS) and bioinformatics analysis were platformed for these DEC isolates which were PCR positive for mcr genes. Results: Seventy in 91 isolates showed different antimicrobial resistance levels to the drugs tested with a resistance rate of 76.92%. The isolates showed the highest antimicrobial resistance rates to ampicillin (69.23%, 63/91) and trimethoprim-sulfamethoxazole (59.34%, 54/91), respectively. The multiple drug-resistant rate was 47.25% (43/91). Two mcr-1 gene and ESBL (extended-spectrum beta-lactamase) positive EAEC (enteroaggregative Escherichia coli) strains were detected. One of them was identified as serotype of O11:H6, which showed a resistance profile to 25 tested drugs referring to 10 classes, and 38 drug resistance genes were predicted by genome analysis. The other one was O16:H48 serotype, which was resistant to 21 tested drugs belonging to 7 classes and carried a new variant of mcr-1 gene (mcr-1.35). Conclusion: An overall high-level antimicrobial resistance was found among foodborne DEC isolates recovered from parts of China in 2020, and so was the MDR (multi-drug resistance) condition. MDR strains carrying multiple resistance genes such as mcr-1 gene were detected, and a new variant of mcr-1 gene was also found. It is necessary to continue with a dynamic monitoring on DEC contamination and an ongoing research into antimicrobial resistance mechanisms.


Subject(s)
Humans , Colistin/pharmacology , Anti-Bacterial Agents/pharmacology , Escherichia coli Infections/epidemiology , Escherichia coli Proteins/genetics , Drug Resistance, Bacterial/genetics , China/epidemiology , Escherichia coli , Plasmids/genetics , Microbial Sensitivity Tests
2.
Biol. Res ; 55: 7-7, 2022. ilus, graf
Article in English | LILACS | ID: biblio-1383911

ABSTRACT

BACKGROUND: Aerobic metabolism generates reactive oxygen species that may cause critical harm to the cell. The aim of this study is the characterization of the stress responses in the model aromatic degrading bacterium Paraburkholderia xenovorans LB400 to the oxidizing agents paraquat and H 2 O2. METHODS: Antioxidant genes were identified by bioinformatic methods in the genome of P. xenovorans LB400, and the phylogeny of its OxyR and SoxR transcriptional regulators were studied. Functionality of the transcriptional regulators from strain LB400 was assessed by complementation with LB400 SoxR of null mutant P. aeruginosa ΔsoxR, and the construction of P. xenovorans pIZ oxyR that overexpresses OxyR. The effects of oxidizing agents on P. xenovorans were studied measuring bacterial susceptibility, survival and ROS formation after exposure to paraquat and H 2 O2. The effects of these oxidants on gene expression (qRT PCR) and the proteome (LC-MS/MS) were quantified. RESULTS: P. xenovorans LB400 possesses a wide repertoire of genes for the antioxidant defense including the oxyR , ahpC , ahpF , kat , trxB , dpsA and gorA genes, whose orthologous genes are regulated by the transcriptional regulator OxyR in E. coli . The LB400 genome also harbors the soxR, fumC , acnA , sodB , fpr and fldX genes, whose orthologous genes are regulated by the transcriptional regulator SoxR in E. coli . The functionality of the LB400 soxR gene was confirmed by complementation of null mutant P. aeruginosa Δ soxR . Growth, susceptibility, and ROS formation assays revealed that LB400 cells were more susceptible to paraquat than H2O2. Transcriptional analyses indicated the upregulation of the oxyR , ahpC1 , katE and ohrB genes in LB400 cells after exposure to H2O2, whereas the oxyR , fumC , ahpC1 , sodB1 and ohrB genes were induced in presence of paraquat. Proteome analysis revealed that paraquat induced the oxidative stress response proteins AhpCF and DpsA, the universal stress protein UspA and the RNA chaperone CspA. Both oxidizing agents induced the Ohr protein, which is involved in organic peroxide resistance. Notably, the overexpression of the LB400 oxyR gene in P. xenovorans significantly decreased the ROS formation and the susceptibility to paraquat, suggesting a broad OxyR regulated antioxidant response. CONCLUSIONS: This study showed that P. xenovorans LB400 possess a broad range oxidative stress response, which explain the high resistance of this strain to the oxidizing compounds paraquat and H2O2.


Subject(s)
Gene Expression Regulation, Bacterial , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Oxidation-Reduction , Repressor Proteins/genetics , Repressor Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Chromatography, Liquid , Oxidative Stress , Burkholderiaceae , Escherichia coli/genetics , Tandem Mass Spectrometry , Hydrogen Peroxide/pharmacology
3.
Chinese Journal of Biotechnology ; (12): 4615-4629, 2022.
Article in Chinese | WPRIM | ID: wpr-970335

ABSTRACT

Transketolase (EC 2.2.1.1, TK) is a thiamine diphosphate-dependent enzyme that catalyzes the transfer of a two-carbon hydroxyacetyl unit with reversible C-C bond cleavage and formation. It is widely used in the production of chemicals, drug precursors, and asymmetric synthesis by cascade enzyme catalysis. In this paper, the activity of transketolase TKTA from Escherichia coli K12 on non-phosphorylated substrates was enhanced through site-directed saturation mutation and combined mutation. On this basis, the synthesis of tartaric semialdehyde was explored. The results showed that the optimal reaction temperature and pH of TKTA_M (R358I/H461S/R520Q) were 32 ℃ and 7.0, respectively. The specific activity on d-glyceraldehyde was (6.57±0.14) U/mg, which was 9.25 times higher than that of the wild type ((0.71±0.02) U/mg). Based on the characterization of TKTA_M, tartaric acid semialdehyde was synthesized with 50 mmol/L 5-keto-d-gluconate and 50 mmol/L non-phosphorylated ethanolaldehyde. The final yield of tartaric acid semialdehyde was 3.71 g with a molar conversion rate of 55.34%. Hence, the results may facilitate the preparation of l-(+)-tartaric acid from biomass, and provide an example for transketolase-catalyzed non-phosphorylated substrates.


Subject(s)
Escherichia coli/genetics , Transketolase/chemistry , Tartrates , Escherichia coli Proteins/genetics
4.
Chinese Journal of Biotechnology ; (12): 4385-4402, 2022.
Article in Chinese | WPRIM | ID: wpr-970322

ABSTRACT

L-homoserine and its derivatives (O-succinyl-L-homoserine and O-acetyl-L-homoserine) are precursors for the biosynthesis of L-methionine, and various C4 compounds (isobutanol, γ-butyrolactone, 1, 4-butanediol, 2, 4-dihydroxybutyric acid) and L-phosphinothricin. Therefore, the fermentative production of L-homoserine and its derivatives became the research hotspot in recent years. However, the low fermentation yield and conversion rate, and the unclear regulation mechanism for the biosynthesis of L-homoserine and its derivatives, hamper the development of an efficient production process for L-homoserine and its derivatives. This review summarized the advances in the biosynthesis of L-homoserine and its derivatives by metabolic engineering of Escherichia coli from the aspects of substrate uptake, redirection of carbon flow at the key nodes, recycle of NADPH and export of target products. This review may facilitate subsequent metabolic engineering and biotechnological production of L-homoserine and its derivatives.


Subject(s)
Escherichia coli/metabolism , Metabolic Engineering , Homoserine/metabolism , Escherichia coli Proteins/metabolism , Fermentation
6.
Chinese Journal of Biotechnology ; (12): 3300-3309, 2021.
Article in Chinese | WPRIM | ID: wpr-921426

ABSTRACT

In Gram-negative bacteria, lipopolysaccharide transport (Lpt) protein LptA and LptC form a complex to transport LPS from the inner membrane (IM) to the outer membrane (OM). Blocking the interaction between LptA and LptC will lead to the defect of OM and cell death. Therefore, Lpt protein interaction could be used as a target to screen new drugs for killing Gram-negative bacteria. Here we used biolayer interferometry (BLI) assay to detect the interaction between LptA and LptC, with the aim to develop a method for screening the LptA/LptC interaction blockers in vitro. Firstly, LptC and LptA with or without signal peptide (LptAfull or LptAno signal) were expressed in E. coli BL21(DE3). The purified proteins were then labeled with biotin and the super streptavidin (SSA) biosensor was blocked with diluent. The biotin labeled protein sample was mixed with the sensor, and then the binding of the protein with a series of diluted non biotinylated protein was detected. At the same time, non-biotinylated protein was used as a control. The binding of biotinylated protein to a small molecule IMB-881 and the blocking of interaction were also detected by the same method. In the blank control, the biosensor without biotinylated protein was used to detect the serially diluted samples. The signal response constant was calculated by using steady analysis. The results showed that biotinylated LptC had a good binding activity with LptAfull and LptAno signal with KD value 2.9e⁻⁷±7.9e⁻⁸ and 6.0e⁻⁷±2.8e⁻⁸, respectively; biotinylated LptAno signal had a good binding activity with LptC, with a KD value of 9.6e⁻⁷±7.2e⁻⁸. All binding curves showed obvious fast binding and fast dissociation morphology. The small molecule compound IMB-881 can bind to LptA to block the interaction between LptA and LptC, but has no binding activity with LptC. In summary, we developed a method for detecting the LptA/LptC interaction based on the BLI technology, and confirmed that this method can be used to evaluate the blocking activity of small molecule blockers, providing a new approach for the screening of LptA/LptC interaction blockers.


Subject(s)
Carrier Proteins , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Interferometry , Membrane Proteins/metabolism
7.
Electron. j. biotechnol ; 46: 8-13, jul. 2020. tab, graf
Article in English | LILACS | ID: biblio-1223212

ABSTRACT

BACKGROUND: Poly-3-hydroxybutyrate (PHB) can be efficiently produced in recombinant Escherichia coli by the overexpression of an operon (NphaCAB) encoding PHB synthetase. Strain improvement is considered to be one of critical factors to lower the production cost of PHB in recombinant system. In this study, one of key regulators that affect the cell growth and PHB content was confirmed and analyzed. RESULT: S17-3, a mutant E. coli strain derived from S17-1, was found to be able to achieve high cell density when expressing NphaCAB with the plasmid pBhya-CAB. Whole genome sequencing of S17-3 revealed genetic alternations on the upstream regions of csrA, encoding a global regulator cross-talking between stress response, catabolite repression and other metabolic activities. Deletion of csrA or expression of mutant csrA resulted in improved cell density and PHB content. CONCLUSION: The impact of gene deletion of csrA was determined, dysfunction of the regulators improved the cell density of recombinant E. coli and PHB production, however, the detail mechanism needs to be further clarified.


Subject(s)
Escherichia coli/metabolism , Hydroxybutyrates/metabolism , Repressor Proteins/genetics , Biopolymers/genetics , Recombinant Proteins , RNA-Binding Proteins/genetics , Gene Deletion , Escherichia coli Proteins/genetics , Escherichia coli/genetics , Metabolic Engineering , Ligases/metabolism
8.
Mem. Inst. Oswaldo Cruz ; 115: e190469, 2020. graf
Article in English | LILACS, SES-SP | ID: biblio-1135243

ABSTRACT

BACKGROUND Oxidative stress is responsible for generating DNA lesions and the 8-oxoguanine (8-oxoG) is the most commonly lesion found in DNA damage. When this base is incorporated during DNA replication, it could generate double-strand DNA breaks and cellular death. MutT enzyme hydrolyzes the 8-oxoG from the nucleotide pool, preventing its incorporation during DNA replication. OBJECTIVES To investigate the importance of 8-oxoG in Leishmania infantum and L. braziliensis, in this study we analysed the impact of heterologous expression of Escherichia coli MutT (EcMutT) enzyme in drug-resistance phenotype and defense against oxidative stress. METHODS Comparative analysis of L. braziliensis and L. infantum H2O2 tolerance and cell cycle profile were performed. Lines of L. braziliensis and L. infantum expressing EcMutT were generated and evaluated using susceptibility tests to H2O2 and SbIII, cell cycle analysis, γH2A western blotting, and BrdU native detection assay. FINDINGS Comparative analysis of tolerance to oxidative stress generated by H2O2 showed that L. infantum is more tolerant to exogenous H2O2 than L. braziliensis. In addition, cell cycle analysis showed that L. infantum, after treatment with H2O2, remains in G1 phase, returning to its normal growth rate after 72 h. In contrast, after treatment with H2O2, L. braziliensis parasites continue to move to the next stages of the cell cycle. Expression of the E. coli MutT gene in L. braziliensis and L. infantum does not interfere in parasite growth or in susceptibility to SbIII. Interestingly, we observed that L. braziliensis EcMutT-expressing clones were more tolerant to H2O2 treatment, presented lower activation of γH2A, a biomarker of genotoxic stress, and lower replication stress than its parental non-transfected parasites. In contrast, the EcMutT is not involved in protection against oxidative stress generated by H2O2 in L. infantum. MAIN CONCLUSIONS Our results showed that 8-oxoG clearance in L. braziliensis is important to avoid misincorporation during DNA replication after oxidative stress generated by H2O2.


Subject(s)
Humans , Animals , Mice , Rats , Pyrophosphatases/genetics , Pyrophosphatases/metabolism , Superoxide Dismutase/metabolism , Leishmania braziliensis/drug effects , Leishmania infantum/drug effects , Escherichia coli Proteins/genetics , Escherichia coli , Guanine/analogs & derivatives , Antimony/toxicity , Rabbits , Superoxide Dismutase/genetics , Leishmania braziliensis/enzymology , Leishmania infantum/enzymology , Oxidative Stress/drug effects , Oxidative Stress/physiology , Escherichia coli Proteins/metabolism , Guanine/pharmacology , Hydrogen Peroxide/toxicity , Antiprotozoal Agents/pharmacology
9.
Chinese Journal of Biotechnology ; (12): 2104-2112, 2020.
Article in Chinese | WPRIM | ID: wpr-878470

ABSTRACT

Shikimic acid is an intermediate metabolite in the synthesis of aromatic amino acids in Escherichia coli and a synthetic precursor of Tamiflu. The biosynthesis of shikimic acid requires blocking the downstream shikimic acid consuming pathway that leads to inefficient production and cell growth inhibition. In this study, a dynamic molecular switch was constructed by using growth phase-dependent promoters and degrons. This dynamic molecular switch was used to uncouple cell growth from shikimic acid synthesis, resulting in the production of 14.33 g/L shikimic acid after 72 h fermentation. These results show that the dynamic molecular switch could redirect the carbon flux by regulating the abundance of target enzymes, for better production.


Subject(s)
Escherichia coli/genetics , Escherichia coli Proteins/genetics , Industrial Microbiology/methods , Metabolic Engineering , Shikimic Acid/metabolism
10.
Braz. j. infect. dis ; 23(3): 203-206, May-June 2019. graf
Article in English | LILACS | ID: biblio-1039226

ABSTRACT

ABSTRACT Global dissemination of mcr-like genes represents a serious threat to public health since it jeopardizes the effectiveness of colistin, an antibiotic used as a last-resort treatment against highly antibiotic-resistant bacteria. In 2017, a mcr-1-positive isolate of Escherichia coli was found in Chile for the first time. Herein we report the genetic features of this strain (UCO-457) by whole-genome sequencing (WGS) and conjugation experiments. The UCO-457 strain belonged to ST4204 and carried a 285 kb IncI2-type plasmid containing the mcr-1 gene. Moreover, this plasmid was transferred by conjugation to an E. coli J53 strain at high frequency. The isolate harbored the cma, iroN, and iss virulence genes and did carry resistance genes to trimethoprim/sulfamethoxazole and fluoroquinolones. Other antibiotic resistance determinants such as β-lactamases-encoding genes were not detected, making the isolate highly susceptible to these antibiotics. Our results revealed that such susceptible isolates could be acting as platforms to disseminate plasmid-mediated colistin resistance. Based on this evidence, we consider that mcr-like prevalence deserves urgent attention and should be examined not only in highly resistant bacteria but also in susceptible isolates.


Subject(s)
Humans , Escherichia coli Proteins/genetics , Escherichia coli/genetics , Escherichia coli Infections/microbiology , Outpatients , Chile , Escherichia coli/drug effects , Disk Diffusion Antimicrobial Tests , Anti-Bacterial Agents/pharmacology
11.
Journal of Southern Medical University ; (12): 344-350, 2019.
Article in Chinese | WPRIM | ID: wpr-772061

ABSTRACT

OBJECTIVE@#To establish a quantitative fluorescent detection method using DAPI for detecting inorganic polyphosphate (polyP) in enterohemorrhagic Escherichia coli (EHEC) O157:H7.@*METHODS@#The DNA of wild-type strain of EHEC O157:H7 was extracted and purified. DAPI was combined with the extracted DNA and polyP45 standards for measurement of the emission spectra at 360 nm and 415 nm fluorescence spectrophotometry. The fluorescence of DAPI-DNA and DAPI-polyP complexes was detected by fluorescence confocal microscopy to verify the feasibility of DAPI for detecting polyP. To determine the optimal pretreatment protocol for improving the cell membrane permeability, the effects of 6 pretreatments of the cells (namely snap-freezing in liquid nitrogen, freezing at -80 ℃, and freezing at -20 ℃, all followed by thawing at room temperature; heating at 60 ℃ for 10 min; treatment with Triton x-100; and placement at room temperature) were tested on the survival of EHEC O157:H7. The fluorescence values of the treated bacteria were then measured after DAPI staining. A standard calibration curve of polyP standard was established for calculation of the content of polyP in the live cells of wildtype EHEC strain and two mutant strains.@*RESULTS@#At the excitation wavelength of 360 nm, the maximum emission wavelength of DAPI-DNA was 460 nm, and the maximum emission wavelength of DAPI-polyP was 550 nm at the excitation wavelength of 415 nm. The results of confocal microscopy showed that 405 nm excitation elicited blue fluorescence from DAPIDNA complex with the emission wavelength of 425-475 nm; excitation at 488 nm elicited green fluorescence from the DAPIpolyP complex with the emission wavelength of 500-560 nm of. Snap-freezing of cells at -80 ℃ followed by thawing at room temperature was the optimal pretreatment to promote DAPI penetration into the live cells. The standard calibration curve was =1849+127.5 (R=0.991) was used for determining polyP content in the EHEC strains. The experimental results showed that wild-type strain had significantly higher polyP content than the mutant strains with deletion.@*CONCLUSIONS@#We established a convenient quantitative method for direct and reliable detection polyP content to facilitate further study of polyP and its catalytic enzymes in EHEC O157:H7.


Subject(s)
Escherichia coli O157 , Escherichia coli Proteins , Polyphosphates
12.
Chinese Journal of Biotechnology ; (12): 1247-1255, 2019.
Article in Chinese | WPRIM | ID: wpr-771804

ABSTRACT

L-tyrosine is one of three aromatic amino acids that are widely used in food, pharmaceutical and chemical industries. The transport system engineering provides an important research strategy for the metabolic engineering of Escherichia coli to breed L-tyrosine producing strain. The intracellular transport of L-tyrosine in E. coli is mainly regulated by two distinct permeases encoded by aroP and tyrP genes. The aroP and tyrP gene knockout mutants were constructed by CRISPR-Cas technique on the basis of L-tyrosine producing strain HGXP, and the effects of regulating transport system on L-tyrosine production were investigated by fermentation experiments. The fermentation results showed that the aroP and tyrP knockout mutants produced 3.74 and 3.45 g/L L-tyrosine, respectively, which were 19% and 10% higher than that of the original strain. The optimum induction temperature was determined to be 38 °C. Fed-batch fermentation was carried out on a 3-L fermentor. The L-tyrosine yields of aroP and tyrP knockout mutants were further increased to 44.5 and 35.1 g/L, respectively, which were 57% and 24% higher than that of the original strain. The research results are of great reference value for metabolic engineering of E. coli to produce L-tyrosine.


Subject(s)
Escherichia coli , Escherichia coli Proteins , Gene Knockout Techniques , Metabolic Engineering , Tyrosine
13.
Chinese Journal of Biotechnology ; (12): 1761-1770, 2019.
Article in Chinese | WPRIM | ID: wpr-771755

ABSTRACT

Seamless modification is a popular genomic manipulation technique in genetic engineering. Selection stringency of the counter-selection system determines the efficiency of the seamless modification. Recently, a novel counter-selection system, kil, was constructed. It is reported that the selection selectivity of kil is higher in host bacteria harboring plasmid pSim6 than that harboring pKD46, indicating that recombinants could be selected out more efficiently by combining kil counter-selection system and plasmid pSim6. In order to confirm this speculation, four different loci (lacI, dbpa, ack, glk) in Escherichia coli strains W3110, MG1655 and DH10B were selected for testing: dsDNA fragments of different sizes (500 bp, 1 000 bp, and 2 000 bp) were used to substitute tet/kil. As expected, recombination efficiency was higher in host bacteria harboring plasmid pSim6 than that harboring pKD46, and the results were more obvious with the length of dsDNA increasing. Specifically, recombination efficiency was 1.2 to 2 fold higher in pSim6 harboring bacteria than in pKD46 harboring bacteria when dsDNA fragments were 1 000 bp in length. With the length of dsDNA increasing up to 2 000 bp, the gap increased to 2.2-5 fold. In conclusion, it is easier to perform seamless modification by combining kil counter-selection system and plasmid pSim6 than combining kil and pKD46. An alternative tool in genomic engineering is provided in this study.


Subject(s)
Escherichia coli , Escherichia coli Proteins , Genetic Engineering , Plasmids , Recombination, Genetic
14.
Chinese Journal of Biotechnology ; (12): 871-879, 2019.
Article in Chinese | WPRIM | ID: wpr-771323

ABSTRACT

By using an RAD peptide display system derived from the ATPase domain of recombinase RadA of Pyrococcus furiosus, an anti-hCG antibody-like molecule was prepared by grafting an hCG-binding peptide to the RAD scaffold. After linking to sfGFP gene, a gene of hCG peptide-grafted RAD was synthesized and cloned into a bacterial expression vector (pET30a-RAD/hCGBP-sfGFP). The vector was transformed into Escherichia coli, and expression of the fusion protein was induced. After isolation and purification of the fusion protein, its binding affinity and specificity to hCG were determined by using a process of immunoabsorption followed by GFP fluorescence measurement. A comparison of hCG-binding activity with a similarly grafted single-domain antibody based on a universal scaffold was performed. The measurement of hCG-binding affinity and specificity revealed that the grafted RAD has an optimally high binding affinity and specificity to hCG, which are better than the grafted single-domain antibody. Moreover, the affinity and specificity of grafted RAD molecule are comparable to those of a commercial monoclonal antibody. In addition, the hCG-binding peptide-grafted RAD molecule has a relatively high biochemical stability, making it a good substitute for antibody with potential application.


Subject(s)
Humans , Antibodies, Monoclonal , Chemistry , Metabolism , Antibody Specificity , DNA-Binding Proteins , Genetics , Metabolism , Escherichia coli , Genetics , Escherichia coli Proteins , Metabolism , Peptides , Recombinant Fusion Proteins , Genetics , Metabolism
15.
Braz. j. microbiol ; 49(4): 936-941, Oct.-Dec. 2018. tab, graf
Article in English | LILACS | ID: biblio-1039269

ABSTRACT

ABSTRACT Shigatoxigenic and enteropathogenic Escherichia coli with virulence and multidrug resistance profile were isolated from Nile tilapia. This study finding is of great importance to public health because they help understand this pathogen epidemiology in fish and demonstrate how these animals can transmit E. coli related diseases to humans.


Subject(s)
Humans , Animals , Enteropathogenic Escherichia coli/isolation & purification , Shiga-Toxigenic Escherichia coli/isolation & purification , Fishes/microbiology , Phylogeny , Food Contamination/analysis , Consumer Product Safety , Escherichia coli Proteins/genetics , Enteropathogenic Escherichia coli/classification , Enteropathogenic Escherichia coli/genetics , Shiga-Toxigenic Escherichia coli/classification , Shiga-Toxigenic Escherichia coli/genetics , Meat/microbiology
16.
Braz. j. microbiol ; 49(3): 569-574, July-Sept. 2018. tab, graf
Article in English | LILACS | ID: biblio-951794

ABSTRACT

Abstract Multidrug-resistant microorganisms are of great concern to public health. Genetic mobile elements, such as plasmids, are among the most relevant mechanisms by which bacteria achieve this resistance. We obtained an Escherichia coli strain CM6, isolated from cattle presenting severe diarrheic symptoms in the State of Querétaro, Mexico. It was found to contain a 70 kb plasmid (pMEX01) with a high similarity to the pHK01-like plasmids that were previously identified and described in Hong Kong. Analysis of the pMEX01 sequence revealed the presence of a blaCTX-M-14 gene, which is responsible for conferring resistance to multiple β-lactam antibiotics. Several genes putatively involved in the conjugative transfer were also identified on the plasmid. The strain CM6 is of high epidemiological concern because it not only displays resistance to multiple β-lactam antibiotics but also to other kinds of antibiotics.


Subject(s)
Animals , Cattle , Plasmids/genetics , Cattle Diseases/microbiology , Drug Resistance, Bacterial , beta-Lactams/pharmacology , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli Infections/veterinary , Anti-Bacterial Agents/pharmacology , Plasmids/metabolism , beta-Lactamases/genetics , beta-Lactamases/metabolism , Microbial Sensitivity Tests , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Escherichia coli Infections/microbiology , Mexico
17.
Braz. j. microbiol ; 49(3): 471-480, July-Sept. 2018. tab, graf
Article in English | LILACS | ID: biblio-951821

ABSTRACT

Abstract Escalating burden of antibiotic resistance that has reached new heights present a grave concern to mankind. As the problem is no longer confined to clinics, we hereby report identification of a pandrug resistant Escherichia coli isolate from heavily polluted Delhi stretch of river Yamuna, India. E. coli MRC11 was found sensitive only to tobramycin against 21 antibiotics tested, with minimum inhibitory concentration values >256 µg/mL for amoxicillin, carbenicillin, aztreonam, ceftazidime and cefotaxime. Addition of certain heavy metals at higher concentrations were ineffective in increasing susceptibility of E. coli MRC11 to antibiotics. Withstanding sub-optimal concentration of cefotaxime (10 µg/mL) and mercuric chloride (2 µg/mL), and also resistance to their combinatorial use, indicates better adaptability in heavily polluted environment through clustering and expression of resistance genes. Interestingly, E. coli MRC11 harbours two different variants of blaTEM (blaTEM-116 and blaTEM-1 with and without extended-spectrum activity, respectively), in addition to mer operon (merB, merP and merT) genes. Studies employing conjugation, confirmed localization of blaTEM-116, merP and merT genes on the conjugative plasmid. Understanding potentialities of such isolates will help in determining risk factors attributing pandrug resistance and strengthening strategic development of new and effective antimicrobial agents.


Subject(s)
Metals, Heavy/pharmacology , Drug Resistance, Multiple, Bacterial , Rivers/microbiology , Escherichia coli/drug effects , Anti-Bacterial Agents/pharmacology , Operon , beta-Lactamases/genetics , beta-Lactamases/metabolism , Microbial Sensitivity Tests , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Escherichia coli/isolation & purification , Escherichia coli/enzymology , Escherichia coli/genetics , India
19.
Rev. chil. infectol ; 35(4): 343-350, ago. 2018. tab
Article in Spanish | LILACS | ID: biblio-978043

ABSTRACT

Resumen Introducción: En las infecciones por enterobacterias productoras de β-lactamasas de espectro extendido (BLEE), los β-lactámicos preferidos para tratamiento son los carbapenémicos. Sin embargo, estudios clínicos muestran eficacia de piperacilina/tazobactam en ciertas infecciones por Escherichia coli productoras de BLEE. Objetivo: Determinar la cura clínica y microbiológica con piperacilina/tazobactam en pacientes con infecciones por E. coli productoras de BLEE, tipo CTX-M. Materiales/Métodos: Estudio descriptivo, retrospectivo, con adultos internados en un hospital universitario. Incluimos infecciones del tracto urinario (ITU), intra-abdominales (IIA) e infecciones de tejidos blandos (ITB). Resultados: Estudiamos 40 pacientes, donde 65% correspondían a ITU, 25% IIA y 10 % ITB. La cura clínica global se logró en 89,4%, con mejores resultados en las ITU (100%), seguidas de ITB (80%) e IIA (70%). El 85% de las cepas tenía concentraciones inhibitorias mínimas (CIM) ≤ 8 μg/mL y 70% con CIM ≤ 4 μg/mL. La tasa de fracaso fue mayor en las infecciones con inóculos altos intraabdominales. La BLEE del tipo CTX-M-15 se encontró en 62,5%. Conclusiones: Piperacilina/tazobactam logró cura clínica y microbiológica, en pacientes con infecciones por E. coli productoras de BLEE susceptibles, especialmente en ITU e IPB y en menor medida en IIA.


Background: Carbapenems are the preferred β-lactamics for treatment for infections caused by enterobacteria producing extended-spectrum β-lactamases (ESBL); however, clinical studies show effectiveness of piperacillin/tazobactam in certain infections by Escherichia coli ESBL producers. Aim: To determine the clinical and micro-biological cure with piperacillin/tazobactam in patients with infections caused by E. coli ESBL producers, CTXM type. Methods: Retrospective descriptive study with adults hospitalized in a university hospital. We included urinary tract infections (UTI), intra-abdominal infections (IAI), soft tissue infections (STI) and/or bacteremia. Results: We studied 40 patients, where 65% corresponded to UTI, 25% to IAI and 10% were STI. The overall clinical cure was achieved in 89.4%, with the best results in the ITU (100%), followed by STI (80%) and 70% in IAI. The 85% of the strains had minimum inhibitory concentrations (MIC) ≤8 μg/ml and 70% with MIC ≤4 μg/mL, however the rate of failure were high in intra-abdominal infections with high inocula or not controlled; CTX-M-15 was found in the 62.5%. Conclusions: Piperacillin/tazobactam was efficient to obtain clinical and microbiological cure in patients with infections caused by ESBL producers but susceptible E. coli, especially in UTI and STI and to a lesser extent in IAI.


Subject(s)
Humans , Male , Female , Adult , Aged , beta-Lactamases/drug effects , Escherichia coli Proteins/drug effects , Escherichia coli Infections/drug therapy , Piperacillin, Tazobactam Drug Combination/therapeutic use , Anti-Bacterial Agents/therapeutic use , Retrospective Studies , Treatment Outcome , Escherichia coli/isolation & purification , Escherichia coli/drug effects , Escherichia coli Infections/enzymology , Escherichia coli Infections/microbiology
20.
Rev. chil. infectol ; 35(4): 453-454, ago. 2018.
Article in Spanish | LILACS | ID: biblio-1042649

ABSTRACT

Recently it was described the plasmidial gene mcr-1 associated with colistin resistance. We screened by PCR and sequencing for gene mcr-1 in thirteen clinical isolates resistant to colistin. We observed amplification in one E. coli. To our knowledge, this is the first report of the presence of mcr-1 gene in Chile.


Subject(s)
Colistin/pharmacology , Escherichia coli Proteins/isolation & purification , Drug Resistance, Bacterial/genetics , Escherichia coli/isolation & purification , Escherichia coli/genetics , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Escherichia coli/drug effects , Escherichia coli Infections/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL